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GASEOUS UNIMOLEGCULAR REACTIONS: THEORY OF THE
EFFECTS OF PRESSURE AND OF VIBRATIONAL DEGENERACY

By N. B. SLATER
Unwersity of Leeds

(Communicated by M. G. Evans, F.R.S.T—Received 14 January 1953)

A theory which gave the high-pressure unimolecular reaction rate as K,=vexp (—EkT) is
extended to find the decline of rate with pressure; the gas molecule is again a classical vibrating
system which dissociates at a critical extension of an internal co-ordinate. The general rate K is
found to be approximately

K 1 © e~ xin=l dy

Ko~ T(n+3)Jo Lade-ng-r
where 7 is the effective number of normal modes of vibration; ¢ is proportional to p7T—%, but
depends also on the molecular structure and size. For n<13, this integral is tabulated, and the
pressures at which the rate declines from first order are estimated. The pressure tends to decrease
as n increases; for E/kT ~40, it is estimated that only molecules with six or more atoms should
show rates approaching K, at normal pressures. The table of K/K,, is not carried as far as the
‘bimolecular’ range, but a precise technique is developed for this region.

The theory is compared with Kassel’s classical theory of a molecule of s ‘oscillators’. The low-
pressure activation energy, and the shape of the curve of log K against log p, are similar in the two
theories if 7 =25 —1; the absolute values of p for a given rate are also roughly comparable.

Two results are proved, for the present severely classical model, concerning special cases.
(i) A pair or triplet of degenerate modes with equal frequencies counts as one in assessing ‘n’ for
the general rate K. (ii) If the dissociation co-ordinate g relates atoms m,;, m,, and m, is replaced
by an isotope mf, the high-pressure rate changes in the ratio {m,(m¥+my)/m¥(m, +m,)}; for
this, the internal potential energy ¥ need not be quadratic, nor need ¢ be isolated in ¥ from other
co-ordinates.

1. INTRODUCTION

A theory of gaseous unimolecular reactions (Slater 1939, 1948; these papers will be called
S and S’) is here extended to investigate the decline of the reaction rate at lower pressures.
The theory is based on a classically vibrating molecule which dissociates when a particular
internal dimension ¢ reaches a critical value. The high-pressure first-order rate K,, found
in S" was vexp (— Ey/kT), where Eis the critical energy and v is a precisely defined average
of the normal-mode frequencies of vibration. The present extension to low pressures is
essentially a “collision’ theory. The final approximate formula for the rate K at pressure p is

K 1 0 ok 4i(n—1)

&= H0= g g (1)
where the parameter 4 is proportional to the collision frequency per molecule, and so to p;
n is the number of normal modes contributing to the vibrations in ¢. The parameter 4 is

n
proportional also to u; u, ... 4, (Z W= 1) , where the y; are proportional to the amplitudes
: 1

of the various normal vibrations as they affect ¢.
The proper application of the theory is thus to particular molecules of which the vibra-
tional structure is fully known. The numerical illustrations in this paper are confined,

T Professor Evans had agreed to communicate this paper before his death on 25 December 1952.
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58 N. B. SLATER ON

however, to a mythical ‘typical’ molecule with reasonable values of E,, T, v and the u,
and values of # up to 13.

As Kassel’s theory of unimolecular rates (Kassel 1932) is well known and employs an
apparently similar model of the dissociation process, the two theories will be compared
at each stage of the argument. It was shown in ', § 11, that the ‘specific dissociation rate’
of molecules with a given total energy is, at high pressures, the same in both Kassel’s and
the present theory. It was indicated also that this did not imply that the theories would
agree at low pressures, owing to the different dependence of the dissociation process on
the internal energy distribution. It is found here that Kassel’s and the present theory give
roughly the same trend of rate with pressure if s, the number of ‘oscillators’ in Kassel’s
molecule, and 7, the number of normal modes on the present theory, are related by

n—1=2(s—1). (2)
Thus in general terms the present theory demands about twice as many effective oscillators

as Kassel’s, to fit a given K against p curve; but for particular gases the effects of variations
in the parameters, particularly the g, may obscure this general trend.

Outline of the argument

The model of dissociation is reviewed in §2, to remove some earlier obscurities and to
introduce the parallel with Kassel. The general rate K is formulated in § 3 (equation (18))
as a multiple integral over the energy distribution in the z modes; its evaluation is deferred
until §6. In reviewing previous high-pressure results in §4, the opportunity is taken to
point out a simple result (equation (32)) concerning isotopic substitutions.

The limiting low-pressure second-order rate K, is discussed in § 5, and the relation (2)
appears in the comparison of the limiting activation energies. In § 6 the approximation (1)
is given for the general rate K, and comparison with a simple approximation to Kassel’s
classical integral again suggests the relation (2) between the parameters z and 5. Illustrative
calculations of K in terms of p in § 7 are based on the computed table 3 of the function
I,(0) of (1). This table will form a basis for estimating rates for particular gases; but it may
have applications in other fields.

Conclusions given in § 8 on the trends of rate with pressure and on appropriate applica-
tions of the theory need not be restated here. The last section, § 9, deals with the special case
of degenerate vibrations. The theorem is proved that a pair or triplet of degenerate modes
with equal frequencies counts as a single mode in assessing the effective number of modes
in the breaking co-ordinate. This result is important for symmetrical molecules.

The main mathematics, apart from this theorem, is in the appendices. Appendix 1
gives a numerical method for estimating the low-pressure rate K, of §5. In appendix 2
the general rate K is reduced to the form (1); a note is added on the integral 7,(f) in the
recent theory of Marcus (1952 4, 0).

2. THE MODEL OF THE DISSOCIATING MOLECULE

The gas molecule is treated classically as an array of point-atoms which vibrate about
the equilibrium configuration; the general configuration is described by internal co-
ordinates ¢, ¢,, ... which are zero at equilibrium. Particular co-ordinates may be the
extension of the distances between atoms (whether ‘bonded’ or not), or angles, or Car-
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UNIMOLECULAR REACTIONS: EFFECTS OF PRESSURE 59

tesian co-ordinates of atoms referred to axes moving and rotating with the molecule. The
potential energy is assumed to be quadratic in the ¢,; the internal motion can then be
resolved into normal modes 1,2, ... with frequencies vy, v,, ..., energies ¢, ¢, ... and initial
phases ¥, ¥,, .... The energies ¢; and phases in this classical harmonic model are constant
in a free molecule and change only at molecular encounters. A typical internal co-ordinate
¢ is then a function of the time ¢ from the last collision of the form

q= % gicos2m(v,i+v); @, =6, a+0. (3)
i=1

The o;, or ‘amplitude factors’, are constants characteristic of the co-ordinate ¢ considered;
their calculation from the inertial and force constants will be illustrated in a subsequent
paper. The number 7 is at most the total number of normal modes of vibration, but for
a particular co-ordinate n may be less than this. For example, if g is a ‘symmetry co-ordinate’
it will not be affected by some of the modes; again, some modes may affect ¢ so little (that
is, they may give such small , for the co-ordinate ¢) that their contribution to (3) may be
ignored. Thus 7 is the number of modes effectively contributing to the co-ordinate ¢, and
sois to be treated as a characteristic of the co-ordinate rather than of the molecule as a whole.

It will be assumed for the present that the frequenciesv,, v,, ..., v,in (3) are ‘independent’,
thatis, linearly independent in the field of rational numbers; this restriction will be lightened
in §9.

The molecule is assumed to dissociate if and when a particular co-ordinate ¢ attains a
critically high value ¢,; the harmonic motion (3) is assumed to persist up to the moment of
rupture. Now with ‘independent’ v, ..., v,, the sum (3) takes in time all values up to X | g, |,
irrespective of the values of the ¢;. Thus, if the last collision has given the molecule the high
energies necessary to satisfy the inequality

Xl | =] Je=q, (4)

the molecule is ‘energized’, that is, capable of dissociation; but it will dissociate only if
¢ as a function of ¢ attains the value ¢, before a further collision removes the high internal
energy. The chance of dissociation depends therefore both on the behaviour of the function
(3) and on the collision frequency; attention is confined in this section to the former factor.

Let M(7) be the number of zeros of ¢ — ¢, for 0<<¢< 7, where for the moment ¢is defined by
(3) as a function of all positive ¢ with the ¢; and ¢, fixed; and let

L = 1lim M(r)/r. (5)

For large values of g,, the function ¢ is for most of the time (0 <¢<0) less than ¢,, and rises
briefly to g, with the small average frequency L. The fraction of the molecules, with given
a,, ..., a, satistying (4), for which ¢ rises to ¢, in a short time d¢, will be assumed to be Lit;
thus L will be used as the dissociation frequency (per molecule). This last assumption is plausible
rather than secure. It would be invalidated if, for example, the zeros of ¢— ¢, tended to be
‘bunched’, with long gaps between the bunches (compare a remark due to Wigner in
Pelzer (1933)). This is unlikely for large n. For the over-simple case » = 2 it can be inferred
from the results of Slater (1950) that high peaks of ¢ are separated by at most three character-

istic time intervals. For the general case, ‘bunching’ of the zeros would make the limit L
8-2
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60 N. B. SLATER ON

an over-estimate of the dissociation frequency. On the other hand, if ¢ tended to rise swiftly
to an early peak—as would happen if the »; were nearly in simple ratios—then 'L would be
an under-estimate.

In the present case of ‘independent’ frequencies, the limit L is independent of the phases
V15 .- ¥, The formula used in S, and again in part of this paper, is an approximation valid
for small values of X | ;| —¢,, namely,

I — 1 (E'ai'_go)%m_l)( Elaz]i)%. (6)

I(3n+4) 2m layay...q,|

A precise formula (Kac 1943) used in S’ is

L= %ﬂf f :, gsy("%@ {lfIJoW) —l’fIJo(az-J[x2+4n2y2v§])} dxdy. (7)

This vanishes identically when (4) is not satisfied. The relations of (6) and (7) and other
formulae for L will be discussed in another journal.

The critical energy
Only the energy E= % € (8)
1

of the n vibrations effective in the breaking co-ordinate ¢ is of moment. The energies
¢; = €, satisfying (4) and having the least sum £ = £ are

€ = qio?fat, where o?=2Zd2, (9)
so that E, = gi/oa?. (10)

This E, plays the part of ‘critical energy’ per molecule, and will be identified later with the
high-pressure activation energy; but molecules with £> E; are not ‘energized’ unless the
distribution ¢y, ..., ¢, after the last collision satisfies (4).

Kassel’s model

In Kassel’s theory (Kassel 1932) the molecule is a system of s ‘loosely coupled’ oscillators
with frequencies which, in the general formulation, are commensurable (in contrast with
the linearly independent frequencies assumed here), but, in practical calculations, are taken
all equal. Energy is freely transferred between these oscillators all the time, and the molecule
dissociates when (some time after a suitably energizing collision) more than a critical energy
E, (or ¢, in Kassel’s notation) wanders into one particular oscillator.

Since these oscillators have frequencies, one is tempted to make them correspond to the
n ‘effective normal modes’ in (3) with s = z; but since dissociation is associated with the
behaviour of one particular oscillator, one is equally tempted to make the oscillators
correspond to the internal (non-normal) co-ordinates such as ¢ itself. Kassel’s oscillators
have thus a status somewhere between normal and non-normal co-ordinates; they fit best
with the picture of a molecule as a collection of localized bonds each represented approxi-
mately by an oscillator having a characteristic frequency, with also a ‘loose coupling’
between the bond-oscillators. This picture has been useful in spite of its inaccuracy; and
Kassel’s theory likewise is stronger than these remarks might suggest. Without pursuing the
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UNIMOLECULAR REACTIONS: EFFECTS OF PRESSURE 61

foundations any deeper, we shall think of the number of oscillators s and the critical energy
E, (¢,) of Kassel as corresponding to the #n and E, of the present theory.

The frequency with which, out of a total energy E> E,, more than E, is collected into one
of Kassel’s oscillators is, in the classical formulation,

A(1—Ey[E)s, (11)
where the arbitrary constant 4 represents the rate of internal transfer between oscillators.

This quantity (11) plays the role of a ‘dissociation frequency’ L; ‘energized molecules’
are those for which the energies ¢, ..., ¢, in the s oscillators satisfy

z

26.5E>E0. (12)

3. THE GENERAL DISSOCIATION RATE

The following formulation of the dissociation rate at any pressure imitates earlier
theories; it is applicable to any model in which the dissociation probability of an energized
molecule is determined by the internal energies.

The gas is supposed to be at a suitably high temperature 7, and the dissociation to be in
a steady but early stage, unaffected by products of reaction. The dissociation rate will be
formulated as the average of the ‘dissociation frequency’ over the distribution of energized
molecules; this distribution is found by equating the rate of energization by collision to the
sum of the rates of dissociation and de-energization for each elementary range of internal
energy.

A “collision’ will mean an encounter transferring internal energy, or more precisely on
the present model, vibrational energy. The collision frequency per molecule, o, will be
assumed to have the classical form

0=aNlN, a=40*/(nkT|m), (13)
where N is the concentration, m the molecular mass and £ Boltzmann’s constant. Any
‘efficiency-factor’ for energy transfer is here absorbed into the effective encounter-diameter
o, but any dependence of ¢ on 7" will be neglected.

Attention is confined first to a small ‘energized range’ (¢,¢+d¢,) (i = 1,...,n), where
the internal energies ¢; satisfy (4) or, on other models, some other inequality effectively

demanding large energy. The number of molecules raised by collision” (per unit time and
volume) to such a range is assumed to be

wNe ~ZT TI(dekT), E=3Se,. (14)
1

This assumption has been discussed by earlier writers, and may be justified on the present
model by calculations similar to Kassel’s. The ‘steady’ population in any energized range,
however, will not be the Boltzmann’ distribution N e~%/47 [1(de;/k T'), because of the deple-
tion by dissociation; it will be some smaller number, say Ng(e,, ..., ¢,) de; ... de,, where g is
to be determined. The number of these dissociating per unit time is

NgLde, ... de, (15)

where L is the ‘dissociation frequency’ discussed in §2. The number de-energized per
unit time is assumed to be wNgde, ... de,, (16)
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since it may be assumed that energized molecules are in general de-energized by their next
collision.
The assumption that the reaction is ‘steady’ requires the gain (14) to be equated to the

loss (15), (16); hence (L+0) g — 0BT (ET)n, (17)
This determines g as a function of the internal energies (as they occur in £ and L), the

collision frequency and the temperature. The integration of (15) over the internal energies
gives the unimolecular rate-constant K as

1dN
Kz—w—(ﬂ—:f...fgl,del ...de,,

or by (17) K= f f?i_z//l;Tl(kT) (18)

where the integral is over all energized ranges of the ¢;.

As in Kassel’s model, the dissociation frequency (11) depends only on the total energy E,
his form of integral corresponding to (18) is naturally a simple integral over E. The pre-
liminary reduction of the general formula (18) for cases where L is a function of E is

 BldE
f f dey...de, = ;). (19)
E<Zei<E-+dE

Thus (18) becomes, using Kassel’s form (11) for L and a new variable x = (E—E)/k T,

_ Aeb 2 xslevdx K,
K= (s—«l)!fo 1+4( x )3—1’ b= T (20)
w\b-+x

which is equivalent to Kassel’s classical formula (1932, p. 103, equation (24)).

In the present model, the more complex forms (6) or (7) of L make the reduction of the
integral (18) more complicated. The limiting cases of high and low pressure (@ o0 and 0)
will be treated separately before the general case.

4. THE LIMITING FIRST-ORDER RATE

For large values of the concentration, and hence of the collision frequency v, the rate
(18) tends to the first-order rate:

KK, K,- f f LeET TT(de/kT). (21)

This integral was treated in S and S’. The remarks (a) to (¢) below are relevant to the
present discussion; the note (f) is a digression of independent interest.
(a) The substitution of Kac’s formula (7) for L in (21) gives the precise result (S')

K,=ve? (b=EJkT), (22)
where v = /(Za?via?), (23)
so that v is a ‘weighted’ root-mean-square of the normal mode frequencies. This result

predicts that the ‘frequency factor’ (that is, the rate apart from the exponential e~?) at high
concentrations is of the order 10!3s~! of vibration frequencies.
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(b) The substitution in (21) of the earlier, approximate, formula (6) for L led in S to the
determination of upper and lower bounds to the value of K, ; these had the right-hand side
of (22) as a common dominant term. This result gives confidence in the use of (6) in §6
below in calculating the rate K at intermediate concentrations.

(¢) The substitution of Kassel’s form (11) for L in (21), or the direct evaluation of (20)
with o = 0o, gives (compare also the discussion in S’, §11)

K,=4e?, (24)
so that Kassel’s constant 4 is determined as the high-pressure ‘frequency factor’.

(d) If the activation energy E, is defined as

E,=kT?0(InK)/0T, (25)
then both (22) and (24) naturally give
Ea == EO’ (26)
This determines the ‘critical energy’ E; as the high-pressure activation energy.

(¢) The critical energy E; will be regarded generally as determined experimentally in
this way, and not as a quantity to be calculated from the critical extension ¢, by means of
(10). Equation (10) can be used for particular gases to estimate ¢, (indicating the degree

of distortion of the molecule in the critical configuration) from £, and the calculated value
of a (9) for the molecule considered.

An isotopic efect

(f) The result (32) below is of practical interest. It is a by-product of the extension of
Pelzer’s method given in S', § 7; but here there is no need of normal-mode analysis, so that
the molecular potential energy is not restricted to quadratic terms.

The molecule is supposed to be described by 7 internal co-ordinates ¢y, ..., g,, with ¢,=¢
as the critical co-ordinate which causes dissociation at the value ¢,. The kinetic and potential
energies are assumed to be

PR .,
T = ézlz arsgrqs> V: V(Ql! Gos ++s gn) (27)

The high-pressure rate can be formulated (S’, §7) as
K, = Qf(EO, T): (28)

where E|, is a critical energy determined by ¢, and the form of V, and
%ff: exp{— V(g @os --» 3,) [k T} gy ... dg,
ff: exp{—V{g1, 95, ---,¢,) [k T}dg, ... dg,
~ff: exp (— T'JET) |4y | dgy ... dg,

- ff: exp (— T'/kT)dg, ... dg,

This K, is formulated as the rate at which an equilibrium distribution crosses the phase-
space hyperplane ¢; = g, from one side; or it can be regarded as the product of a ‘mean

Sy, T) =

b

v
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transition velocity’ v with the concentration f(E,, T') of ‘activated complexes’. From the
assumed quadratic form of 7" (compare S’, equation (71)),

v=(2kT4,/nd), (29)

where 4 = det (a,,), and 4, is the cofactor of ¢;; in 4.
Let the critical co-ordinate ¢, be the extension of the distance between two atoms of
masses 7, m,; then (Slater 1949)

A4y = mymy/(my -+my). (30)
Ko, = f(Eg, T) J{2kT(my +my) [mmy m,}. (31)

If the atom m, is replaced by an isotope of mass m§, and if this leaves the potential energy
unchanged, the ratio of the new to the old rate is

K3 _ (”J_l(_mik +m2))%

K © mik (ml + mz) .
This is the result sought. The same result can be inferred from equations (22) and (34)
~ of §’, under the restrictions that (i) Vis quadratic, and (ii) there are no cross-terms ¢, ¢, in V
(so that rupture occurs at an ‘isolated bond’). The derivation given here is independent of
both these restrictions; it requires merely that the critical distance for dissociation involve
the atom for which an isotope is substituted, and that ¥ be unaltered.

Bigeleisen (1949) has derived on transition state theory a more general expression for
K%/K,, containing a factor ./(m/m*), where m, m* denote the ‘effective masses’ in the
dissociation co-ordinate in the two cases; the other factors in his K%/K,, do not arise in the
present purely classical and vibrational model. In applications of his formula (for example,
Bigeleisen 1952) he has used the ‘reduced mass’ ratio (32) for ,/(m/m*) on the basis of S';
this use is strengthened by the present argument.

By (28), (29) and (30)

(32)

5. THE LIMITING SECOND-ORDER RATE
For very small values of the collision frequency w = aN, the general rate (18) approaches
the form K: K~K, : Ky— oA, (33)
where A= f f e ENTTT (de/kT), (34)
I
the integral being over energized ranges of ¢, that is, on the present theory (combining
(4) and (10)) n
3 |al JazolE, (35)

and on Kassel’s model (12), taking s = # for this comparison,

I

E>E,. (36)

n—-M§

€
The limiting rate (33) is of second order, and does not depend on the dissociation-frequency
function L (although the manner of approach of K to K, depends on L). The physical
picture is that when collisions are sufficiently rare, almost every ‘energized’ molecule is
given time to reach the critical configuration and dissociate.
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Before evaluating (33), the question will be considered whether even on the present
theory the energy-boundary (35) should not be replaced by one of the type (36) at very
low pressures.

The condition (35) is more stringent than (36), in the sense that the region of e-space
(=0, 1=1,...,n) satisfying (35) is only part of the region (36); as has been remarked,
a molecule with energy E exceeding E, is not ‘energized’ on the present theory unless the
distribution ¢, ..., ¢, of E between the n effective normal modes satisfies (35). On the picture
of strictly harmonic, independent normal modes this distribution was settled by the last
collision and does not change between collisions; so that the picture requires the boundary
(35). But if cubic and higher terms in the potential energy are added to the quadratic
terms of the present model, for example, as perturbations, the picture of independent modes
becomes blurred, and as an approximation we have ‘nearly independent’ modes which can
in time redistribute their energiest ¢. Thus molecules satisfying (36) but not (35), im-
mediately after a collision, may eventually reach the distribution (35) if collisions are
very rare.

This suggests that the boundary (35) may be approximately correct at low pressures, but
that at very low pressures the boundary is more like (36); in this cautious statement it is
also borne in mind that there may be symmetry restrictions on energy redistribution even
in the anharmonic system. No attempt will be made here to assess the lowness of the
pressure at which the boundary (35) is likely to become a poor approximation. The rate
(33) will be calculated for the boundary (35) as representing the present model, and (36)
as representing Kassel’s.

The rate on the present theory

The integral (34) with the boundary (35) is

A =f...f°° exp (— ek T) U(E | o, | Je,—a/Ey) T(dekT), (37)
0
where U(t) =1 o0r 0 according as ¢>0 or <0. (38)
With the new parameters 4, £ and variables «, defined by

=%/ (2 = 1), (39)
h=b=EJkT (h>0), (40)
% = elkT (%=0), (41)

(37) becomes ©

A= f f exp (— 2x2) U(Spx,— ) TI(2x,dx,).
0
1 c+io dZ
The formula U =5 J T (42)
. 1 ¢+t
gives A= _Zﬁf D(z) dz, (43)
where D(2) = e~ 21 T] $(,2), (44)
1
P(u) = fo exp (—x2-2ux) 2xdx. (45)
0

T This corresponds at first sight to Kassel’s conception of ‘loosely coupled oscillators’, but Kassel’s
redistribution of energy is envisaged as essentially a more rapid process than that considered here; moreover
(compare §2 above), Kassel’s critical entity for dissociation is the oscillator, not an internal co-ordinate.

Vor. 246. A, 9
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The computation of (43) is discussed in appendix 1; the method given there appears neces-
sary if reliable estimates are required, for any values of the u;, for the development of
bimolecular rates on this theory. If, however, the 4 are all similar in magnitude, we may
proceed more directly by representing (45) by the approximation

B(u) ~2 et (46)
Then (43) becomes
A =meVpupy ... g1,
= LT gpynmt 2_
where I= ; N/ﬂ»fc—tw (2z)""lexp (22 —2kz) dz
dr-1 2 g2
=q=pme ¢ He,_,(%),

by one definition of the Hermite polynomial He,. Hence by (40)
A= fafty ooy e He, , (/8)
-1\ 1 n—1y 1
— -1 a=b |1 — (" il
firfly oo f (4TB) 10D {1 ( ; )21;““'3( ) )(21;)2'“}' (47)
This is an approximation giving the rate K, = oA.
It was essentially assumed in this work that 4 is large. With the typical experimental

value b = 40, the last bracket in (47) has the values 0-93, 0-68, 0-38 for n = 5, 9, 13. When the
4; are precisely equal, so that by (39)

= n"", (48)
some values of the non-exponential part of (47) are
for n=1,5,9,13, Ae?=1, 4000, 2x 105, 3-5x 108 (49)

When all of the g are of similar magnitude save that one, 4, for example, is very small,
then in (44) ¢(x,z) may be replaced by unity. This reduces (47) to a similar expression
involving the n—1 vibrations characterized by g, ..., #,_,; the nth mode is ‘ineffective’.
For a more general scatter of the 4, the method of appendix 1 appears necessary.

The rate on Kassel’s model

The integral (34) is on Kassel’s model over the region (12), and becomes after the
reduction (19)

— e’ ® s—1 a—x
A= S fo (b +x)-1e~*dx. (50)
(This is also given by (20) with w small.) Hence
_ble? s—1  (s—1)(s—2) (s—1)!
_(5_1)!{1+ T (51)

The bracket here ranges from 1 to 1-4 for s = 1 to 13, if b = 40. Typical values of the non-
exponential part of (51) for b = 40 are
for s =1,3,5,7, Aet=1, 800, 105, 7x 106. (52)

Thus for given s or n greater than 1, the rates (51) and (52) are appreciably larger than the
previous rates (47) and (49). This confirms a simple inference that can be drawn from
the discussion earlier in this section of what is the appropriate energization boundary on
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the present theory. If at very low pressures the boundary (35) should be changing towards
(36), then the A of (47) should approach the higher value (51) (with s = ). Thus the uni-
molecular ‘constant’ K, = wA should not decrease proportionately to w, but more slowly,
so that the rate in this region would be between the second and the first order. The variation
of rate-order, in going from very high to very low pressures, might thus be of a complex
nature. This possibility will not be pursued here.

If (47) and (51) are again taken as representing the present and Kassel’s model, the
essential difference is in the powers of 4. If the value of z—1 in (47) is twice the value of
s—11in (51), the two formulae give roughly comparable values.

The activation energy
By (25) and (83), the low-pressure activation energy is
E,=kT?0(Inw)/dT+kT?0(In A)[0T. (53)
As by (13) o varies as /7 for constant concentration N, and as 1/J T for constant pressure
(p = NkT), the contribution of the first term in (53) to E, is
kT (N constant), —3k7T (p constant). (54)

This distinction has been emphasized by Johnston (1951). Attention will be concentrated
here on the second term in (53). Since b = E kT,

kT29(In A)/dT = —E,d(In A)/db.

Hence the second term in (53) is on the present theory, if A is represented by the approxi-
mation (47),
1

E, — E,—i(n—1) kT{p(”;Q) 2—1b+}/{1 —(”;1)%+ }
or, approximately, E,=E,—}(n—1)kT. (55)
The corresponding approximation with the formula (51) of Kassel’s model is
E,=E,—(s—1)kT. (56)
If s and 7 are related by equation (2), these become the same.

6. THE GENERAL RATE

An approximate simple integral is given to represent the rate (18) on the present theory,
and its relations to the high- and low-pressure limiting forms, and to Kassel’s formula (20),
are noted. :

To estimate (18) on the present theory, the approximation (6) is used for the dissociation
frequency L (compare §4(5)). It is assumed as in §5 that b = E /kT is large, and that
the 4 (39) and the frequencies v; are not widely scattered. The n-fold:integral (18) may then
be simply estimated by an expansion centred on the point of minimal energization ¢, (9).
A more formal treatment, which appears capable of extension beyond the present restric-
tions, is given in appendix 2. The approximate formula obtained by either method is

K=verI(0), (57)

1 ® x¥n—De-vdx
- Tlntd)Jo 14100071

where 1.(0) (58)

g-2
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The parameters are (compare (23) and (39))

V2 = Xo2v2ja? = 2utv:, b= E kT (59)
and 0 = (wfy) b=V f | (60)
where S = (470D (et §) eyl o (61)

The parameter 0 is thus simply related to the mean vibration and collision frequencies v
and o; the numerical factor f, will be discussed later.
At high pressures, w and § tend to infinity and 7, to unity, so that

K—>ve?t=K,. (62)
This agrees with the exact high-pressure formula (22). Thus (57) can be written
K/K, =1,0). (63)
At very low pressures, @ and § tend to zero, and K approaches the form
K~ve t0|T(3n+3%) = wppy ... p,(4mb) @D e b, (64)

This is the leading term of the previous K, = wA of (33) and (47) or appendix 1 (M).
By its behaviour in these limiting regions, the formula (57) may be expected to give a
good indication of the trend of rate with pressure at all except very low pressures.

Stmple cases
In the simplest case, n =1 (a simple oscillator, or diatomic molecule), (58) and (60)
become L(6) = 1/(14+61), 0 =op,
and the rate (57) is
K =ve?/(1+v/w). (65)

This result is seen to be exact; for in the case of a simple oscillator on the present model, the
dissociation frequency L = v or 0 according as the energy ¢, > E, or <E,. Substituting this
L in the original formula (18) for K gives (65). This result shows the characteristic linear
relation between 1/K and 1/w (or 1/p) which obtains when the dissociation probability is
independent of the excess of energy above E|.

For n= 3,5, I,(0) can be expressed in tabulated functions, and for n = 7,9 can be
reduced to have an integrand with denominator a?+x2 (Slater 19411). The results used

here are 1,(0) = 01+ e/ Ei (—0)}, (66)
I;(0) = $0{1 +u(siucosu—sinu Ciw)}, u= /0, (67)
where {Ei(—0),si0, Cif} = __J‘""d;y{e_y, siny, cos y}
6

respectively. These functions are conveniently tabulated in New York W.P.A. (1940).

Comparison with Kassel’s theory

The result (57) has a close affinity with a simple approximation to Kassel’s formula
(20). This approximation, valid for large 4, not too large s nor too small w, consists in

1 In this early form of the theory no accurate high-pressure formula was available, and a more elaborate
integral was computed for K, to which the present /,(#) then served as a check.
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replacing 6-+x by 4 in the denominator of (20). This gives (writing » for Kassel’s constant
4, as before)

ve b reys—lexdy

I'(s)Jo 1447107

This tends to Kassel’s high-pressure formula (24) as  tends to infinity, and to the form of
the first term of the low-pressure formula (51) as » tends to zero. In terms of the function
defined in (58), (68) can be written

K=

’_al s—1
0 =2, (68)

K=ve?l(0), (69)
with n—1=2(s—1), (70)
so that 0" = (w/v) b=V, (71)

Comparing this with (57) shows that in the present approximation,
Kassel’s rate for a molecule with s oscillators is the same in_form as the present theory gives for
n = 2s—1 normal modes. (72)

The one difference, namely, the factor f, occurring in the parameter ¢, (60) of the present
theory, and not in ¢’ (71), will be estimated below.

The mathematical basis of the contrasted » and s in (72) is to be seen in the formulae (6)
and (11) for Lin the two theories. The physical basis is obscure, because of the quite different
approaches to the formulation of L; the contrast may be connected with the fact that the
present criterion for dissociation is accumulation of extension or amplitude, not of energy.

The factor f,

To complete the comparison with Kassel’s theory, and to lighten the calculations of the
next section, the numerical factor f, (61) in # will be estimated.

For the dissociation of a particular gas, the product y; ..., = «;...,a™" in f, can be
calculated from the vibrational structure; but here typical values are sought to represent
an unspecified molecule. The product g, ..., has its maximum value, n ", when
4y = ... = pu, = n~*; this maximum decreases strongly as » increases. For general values
of the g, it is convenient to introduce a molecular characteristic, A, between 0 and 1, by
the definition Yol oo = Anin, (73)
An estimate of 1 is required. In preliminary calculations on two or three molecules, in-
volving a hydrogen in the critical co-ordinate, it was found that the 4 were fairly evenly
distributed, with the greatest about five times the least; this is also within the range of 4, for
which the present rate-approximations appear reliable (as judged by tests on the two
methods, of § 5 and of appendix 1, for estimating K;). Let it be supposed, then, as a simple
illustration that uy, #, ..., #, are in geometrical progression with g, = 5x,, so that a simple
formula can be set up for A (73) in terms of n. The values of A found in this way are given in
table 1, together with the values of f, (61), («) for A =1 (that is, for g ... x, = n~¥) and
(f) for the illustrative A’s of this table.

'The more representative results (/) indicate that for <13, f, may be expected to be
roughly of the order of unity.

It follows that for a moderate spread of the g, the parameter ¢ (60) of the present theory
is not far from that ((68) and (71)) attributed to Kassel, with n—1 = 2(s—1). Thus, having
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similar parameters in ,(#), the two theories will show roughly the same decline of rate
with absolute pressure. This is a mere suggestion of comparable orders of magnitude; the
pressures for a given value of the rate will in fact differ by the factor f,.

TaABLE 1. VALUEs OF A, AND f,: (¢) FOR 1=1, (f) FOR THESE A

n 3 5 7 9 11 13
£ (@) 24 56 13 30 70 163

A 0-34 0-24 0-16 0-11 0-075 0-050
£ (B 0-8 1-3 21 3-3 53 82

The comparison with Kassel’s theory may be concluded at this point; the comparison
of the parameters has to a limited extent strengthened the formal similarity noted in (72).

7. NUMERICAL VALUES OF THE GENERAL RATE

The formula 7,(0) (58) for K/K,, depends solely on 7, the number of modes, and 6. As by
(60) @ is proportional to the collision frequency v, and so to the pressure p at constant tem-
perature 7, the theory in the present approximation predicts a single characteristic curve
of log,, K/K,, against log,, p foreach n; the sole effect of changing to a different temperature,
or to a different gas with the samen, is to translate the curve parallel to thelog,, p axis. A table
of I,(0) thus gives the shape of the curves for all cases where the present approximations are
reliable; but the absolute position of the curve on the pressure scale requires an estimation
of the ratio 0/p for the gas and temperature under consideration. (The calculation of a
K/K,, table is not made superfluous by the previous comparison with Kassel’s theory; for
Kassel used his exact quantal or classical formulae, and calculated K/K,, afresh for the
characteristics s, 4, E,, T of each reaction he treated.)

A table of I,() is given in (b) below, preceded in (a) by general estimates of d/p for
various n. It would be misleading to give the table first, since the increase of 1 () with =
might suggest that K/K,, increases with 7 for fixed p; in fact, it tends to decrease owing to
changes in the p/0 ratio. This point is made clear in (¢) below, by giving the ‘transition
pressures’ for specified values of K/K,,. In (d) a note is added on temperature effects.

The appraisal of these results is deferred until § 8.

(a) The relation of p to 0

The parameter § (60) is related to p through the collision frequency w. In the assumed
form (13) of w,

k=1-38x10"%erg/deg., m = 1-66x10"2*m*g, N = 9-72x10'8p/T,
where m* is the molecular weight, and p is in mm of mercury. Thus (13) is
w =628 X 10Bc2(m*T)~tp s}, (74)
and the general formula for 0/p is, by (60),
0 _6-28x10%07%,
b Nm*T) v
In the following, the illustrative values used are

m* =50, o=>5x10"8cm, »=5x103s"1, T =700°K, b= 40. (76)

pin-D), (75)
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Values of f, were given in table 1. From these and (75) and (76), the ratios p/0 of table 2
were calculated. They refer, like the f, of table 1:

(a) tod =1 (73), so that g g, ... #, s maximum and p/f is minimum for varying s;

() to the A’s listed in table 1, so that the # have a moderate spread, and the /0 ratios
are more ‘representative’ than those of («).

It is seen that for these illustrative values, /0 decreases markedly as z increases.

TABLE 2. Ratios p/0: (¢) MINIMUM, (/) ‘REPRESENTATIVE’

n 3 5 7 9 11 13
110 (@) 6-15 x 10* 658 7-09 0-0765 8-26 x 10— 8-92 x 106
116 (8) 1-83 x 10 2770 437 0-694 0-0111 177 x 10—

(b) Computed values of I,(0)

The integral I,(0), representing K/K,,, was computed for n = 3, 5, ...,13 from (58) and
the special formulae (66) and (67). Some results for regular increments of log,, # are given in
table 3. The numerical integration has been rounded to three figures, since check calcula-
tions of 1,(c0) gave 1-000... with some error in the next decimal.

1 w0 gpin—Dea-x dy
TasLE 3. I,(0) 1)), T1a0g1
n 3 5 7 9 11 13
loglo 0
-2 0-0096 0-0044 — — — —
-1 0-0835 0-0282 0-0101 — — —
0 0-404 0-189 0-0619 0-0154 — —
1 0-844 0-579 0-258 0-0789 0-0180 —
2 0-981 0-904 0-632 0-280 0-0821 0-0178
3 0-998 0-988 0-912 0-627 0-269 0-0751
4 —_ 0-999 0-988 0-897 0-587 0-239
5 — — 0-999 0-985 0-864 0-525
6 — — — 0-998 0-975 0-811
7 — — — — 0-997 0-957
8 — — — — — 0-994
TasLe 4. 1,(0,)=0-950, 1,(0,,) =0-50
n 3 5 7 9 ‘ 11 13
o, 37-1 213 2000 2:58 x 104 4-19 x 105 8-20 x 10°
Oz 156 665 463 448 5550 8-33 x 10
6,/65, 24 32 43 58 75 98

In table 4 are given the values f5 and 0, of ¢ for which I,(f) = 0-950 and 0-50 respec-
tively. These correspond to the pressures at which (for constant 7) the rate has declined by
5 and 50 9, respectively from the high-pressure limit; they will be called transition pressures.

It is easily visualized from table 3 that increasing n causes a lateral shift of the curve of
I, (orlog,, I,) against log,, 0, together with a fairly slow change of shape of the curve. (The
direction of the shift has no physical significance, because of the change in the p/f ratio
with z.) Similarly, in table 4, 5 and 05, change markedly with z; the significant quantity,
namely, the ratio 6;/6;,, increases slowly. The overall increase in 6;/0;, from n = 3 ton = 13
is, however, by a factor 4; this indicates a more gradual decline of rate with relative pressure
for more complex molecules.
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(¢) The decline of rate with pressure

The estimates p/0 of table 2 could be used to convert table 3 into a table of K/K,, against
log,, p for the various values of 7. This, however, would over-emphasize or ‘ crystallize’ the
results for a special set of p/f ratios; it is better to estimate the best #n and p/d ratio for any
particular gas that is studied, and then construct a graph of K/K,, against log,, from the
corresponding column of table 3.

It will be a sufficient indication here of the general dependence of K/K,, on n if the p/0
ratios of table 2 are used to convert the &5, 05, of table 4 into the corresponding ‘transition
pressures’ of 5 and 50 9%, decline of K; this will suggest rough orders of magnitude. The
results are shown in table 5, («) for A = 1, (f) for the A of table 1. The results («) indicate the
minimum (for varying ;, and also for ¢<(5 x 1078) pressures at which the rate is 5 or 50 %,
down; the results (f) again are more ‘representative’ estimates. The ratios p;/ps, are of
course equal to the 6;/0;, of table 4.

Comments are made in §8 on these ‘transition pressures’. The sensitivity of absolute
pressure estimates to changes in b as well as in f, (compare the form (75) of p/f) must be
kept in mind.

TABLE 5. ‘TRANSITION’ PRESSURES (MM) OF 5 AND 50 9, DECLINE:
() AND (f) As IN TABLES 1 AND 2

n 3 5 7 9 11 13
(@) ps 23 % 105 1-4 % 10 1-4 % 10* 2000 350 73
by 96x 10t 4400 330 34 46 0-74
B) b 68 x 108 59 x 105 87 x 10t 1-8x10¢ 4650 1450
5
b 2:9%105 18 x 10t 2000 310 62 15

(d) Temperature effect

For any particular gas, the parameter # determining K/K,, is by (75) proportional to
po¥=D T4 and so to p7 . Thus for one gas K/K,, has the same value for pairs of values
(p, T) such that pT—* is constant. If, for example, plots are made of log,, (K/K.,) against
log,op, (1) at a temperature 77 and (2) at a higher temperature 7T, then the curve (2) is the
curve (1) shifted in the direction of increasing log;,p by an amount

Alogyop = gnlogy, (T5/ 1)), (77)

since for the higher temperature the same K/K,, occurs at the higher pressure.

If T, = 700°K, T, = 750° n = 13, this shift is approximately Alog;,p = 0-2. This is of
an order which could be tested by experiment.

Some comparisons of this nature with early experimental data were made by Kassel
(1932, chapter x).

8. CONCLUSIONS

Concerning the central problem of the variation of rate with pressure at constant tem-
perature, some ‘general and particular trends’ are listed here which are apparent in the
foregoing theory and illustrative calculations. Some applications of the theory are then
foreshadowed.
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General trends

(i) The general shapes of log,, K against log,,p curve are naturally similar to those of
earlier theories in which the dissociation probability increases with energy.

(ii) For fixed values of b = E /kT, m*, ¢ as in § 7, the ‘transition pressures’ p5 and ps,
of 5 or 50 %, decline of K, tend to decrease as n increases (table 5). This suggests that the
more complex the molecule, the lower will be the pressure at which the first-order rate is
approached. But this general trend may be contradicted in specific instances; for example,
of two gases the one with larger n may have the larger transition pressures if it has the
smaller E,.

(iii) The ratio py/ps, increases with n. This means that once K has begun to decline from
K., its subsequent decline with decreasing log,,p is the slower the larger # is. This ‘trend’
admits no exceptions if the approximations of §6 are valid; for ps/ps, = 05/05,, and this
ratio (given in table 4) depends by the nature of 7,(f) solely on z.

(iv) For a given gas, the pressure at which K/K,, has any assigned value increases with
temperature (§7(d)).

Particular trends

(v) Table 5 suggests that, for conditions roughly simulated by the constants used in § 7,
gases will show first-orderrates under two atmospheres onlyif zis atleast 10, or more probably
at least 12 (compare parts (a) and (f) of the table). First-order rates would appear for
smaller n, however, in cases where b is appreciably larger than the value 40 used in § 7.

(vi) Smaller molecules should show rates between first and second order at normal ranges
of pressure.

(vii) As for non-linear molecules the number # is at most 3 N— 6, where N is the number
of atoms, the trend (v) implies that (with &~ 40) first-order rates would normally be
observed only if N is at least about 6.

(viii) As by §6 the present theory gives much the same K/K,, for » modes as Kassel’s
theory does for s oscillators, with s—1 = 4(z—1), it would be expected that Kassel’s theory,
fitted to particular gases, would require s to be at most half the available number 3N —6 of
degrees of freedom. In the examples in his book, s tends to be nearer two-thirds of this
number; but this discrepancy is not conspicuous, and in any case a review of both old and
recent data seems desirable.

Fields of application

(ix) The field to which the theory is best suited is the dissociation of molecules of which
the vibrational structure has been fully analyzed; the constants «,,...,, and v are then
calculable, and the rate K can be estimated, ‘absolutely’, as a function of pressure; the
critical energy is however assumed as an empirical constant and there is uncertainty in the
assignment of the appropriate collision diameter o.

- (x) For complex molecules of less well-known vibrational structure, it may be possible
to deduce how many normal modes are effectively concerned in some likely breaking co-
ordinate. The theoretical shape of the K against log,,p curve can then be inferred, and its
position estimated for a conventional spread of the amplitude factors.

(xi) More reliable estimates of the relative behaviour of related molecules may be

VoL. 246. A. 10
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attempted. For example, (2) one may estimate the relative transition pressures’ of mole-
cules which are neighbours in homologous series by inferring the effective differences in #,
without much attention to other detail; or (b) one may estimate the relative transition
pressures of molecules differing only by an isotope at the critical co-ordinate.

(xii) Some comparisons of the types (ix) to (xi) (¢) with early experimental data have
been made. In view, however, of recent experiments and criticisms of the interpretation of
early data, some fresh comparisons have been initiated.

9. DEGENERATE VIBRATIONS

This section deals with an important special case. So far the normal frequencies vy, ..., v,
have been all linearly independent, and so have certainly been all different. This excluded
the phenomenon of degenerate vibrations in symmetrical molecules, which have pairs or
triplets of normal modes with equal frequencies. The question arises: do the three degenerate
modes of a triplet, for example, count as 3 in assessing the ‘effective number’ of normal
modes in a breaking co-ordinate? The answer is, no; the general rate integral reduces to
a form in which each degenerate set of modes is represented by a single mode with an
enhanced ‘amplitude factor’, so that the effective number of modes is the number of
distinct frequencies. This result is exact, if an additional assumption is admitted concerning
the initial phases.

The precise result for a triplet of degenerate modes is the following. Let the breaking
co-ordinate ¢ contain # modes in all, so that it is of the form (3), but with

V) =Vy=Vs, VsV, ...,V, independent, (78)

and let o = /(a2 +a3+a3). (79)
Then

the general reaction rate is as if there were n—2 modes with amplitude factors o', ay, ..., a, and

JSrequencies vy, vy ..y V. (80)

This theorem will be proved by an application of ‘random-walk’ theory, and some
comments added.
By (78) the expression (3) can be written in the present case

q = acos 2n(vst+y) +%aicos 2n(v,t+v;), (81)
4
3 2 /3 2
where a? = (E a, cos 271%) -{—(Z a,sin 277;#5) , (82)
1 / 1
and, as in (3), a; = a6 (i=1,...,n). (83)

In the case where vy, ..., v, were all ‘independent’, the dissociation frequency L defined
by (5) was a function of ay, ..., a, and ¢,, and independent of ¥, ..., ¥,, (compare (7)). For
the frequencies (78), L depends also on y, — ¢, and ¢, — 5 or, if the form (3) of ¢ is replaced
by (81), L is a function of a (involving a,, ay, as, ¥, ¥,, ¥3 by (82)), a4, ..., a, and ¢,:

L= L(a,ay,...,a,;q,)- (84)
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The formulation in § 3 of the rate K must be adjusted for this new dependence of L on
phase. An ‘energized molecule’ is now one with energies ¢, ...,¢, and phases ¥, ¥, ¥
such that ¢ can attain the critical values ¢,; this requires, by (81),

a+§lai|>%a (85)

the ¢, ¥, entering this inequality through (82) and (83). An ‘elementary energized range’
is now a range (¢, ¢;+de;), (¥, ¥, +dy,) satisfying (85). It is now assumed that the initial
phases ¥y, ¥, ¥; in the gas are uniformly distributed over the range (0,1), so that the
equilibrium number of energized molecules in an elementary range would be (compare § 3)

Ne ’“Tﬁ (de;/kT) dy,dy,dys. The additional factor dy, dy,dy; now appears in equations
I
(14) to (16) of § 3, and the rate (18) is replaced by

Le—E/kl‘ n_de,
Kf fH—L/w /cTHd% (86)

Theintegral may be taken for ¢, = (0,00), ¥, = (0, 1), since L = 0 where ( 85) is not satisfied.

(For the low-pressure integral corresponding to (37) the factor U (d—{—il a; | ——go) must be
1

inserted.)
The integration of (86) will first be performed for e¢,, ¢,, €5, ¥y, ¥4, ¥5. Leaving out the
‘factor’ "
f -l 1 {exp (—6/kT) deyk T, (87)
the integral (86) is
3
[+ [ @) TTHexp (—e,/kT) (deyfkT) dy}, (38)
where (compare (82) to (84))
Sfa) = L1 +Lw). (89)
In (88) thee,, ¥, are replaced by new variables
X _ (26 cos .
Y, (/CT) sin 2m ¢s (‘Y - 1)2’ 3), ; (90)
so that R’=(2x)2+ (Zy,)* = 2a2/kT (91)
by (82) and (83). Then (88) becomes
x2+y2\ dx, dy,
[ o[ rryarTyITexp (—500) Gl (92)

If (x,,y,) are components of three coplanar vectors, R is the length of the vector sum
R=(X,Y) = (2x,2y,). Now (92) is the expectation of a function f of R over a normal
(‘Gaussian’) distribution of x,, y,, each with standard deviation «, (s = 1,2, 3). For such
a distribution, the sums X, ¥ each have normal distributions with standard deviation &’ given
by (79). The expectation (92) thus becomes, in terms of the distribution of the length R,

[ RIGRT ) exp (— Rej2ors) RARJw? = [ flal o) exp (—eykT) degfk T, (93)
where e, = 3k TR/a’?;
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this ‘energy’ is not to be identified physically with the original ;.
The rate (86) now becomes, by (87) to (89) and (93),

' L g\ de
K:f...fmexp(—"gk—],)l;]:ﬁ, (94)
where, by (84), (89) and (93), L = L(a’ \/¢s, ay, ..., a,; q,)- This K is the rate as for a breaking
co-ordinate of #—2 modes, namely,

q =o' Jegcos 2m(vyt+ ) + % ;J6;cos 2m(v;t+9,), (95)
4

with &’ given by (79). This proves the theorem (80).
The result applies equally to a pair of degenerate modes, and to any number of sets of
degenerate modes in q.
Comments

(i) When the modes 1, 2 and 3 have equal frequencies, the corresponding amplitude
factors «;, a,, 3 are to some extent arbitrary; this corresponds to arbitrariness in the choice
of the degenerate normal co-ordinates @;, @,, @; (compare S’, equation (7)). But for
different choices it can be shown that the sum of+aZ+ 3 is invariant; thus the ‘enhanced
amplitude’ o’ (79) is invariant.

(ii) In the high-pressure limit where w tends to infinity, the integral (94) can be evaluated

by the methods of S’ and gives
K,=ve?t, b=LFEkT, (96)

with o =o'+ 3 a2, E,= gl
4
n
V2 = ('§+ Y a?v?)/al.
4
n
By (79) a? =3 a3,
1
n
V2= Y afvifa?  (v; = vy =vs),
1

so that these constants a, E,, v agree with the earlier formulae (9), (10) and (23). Thus (96)
is the same as the rate K, (22) found for » independent frequencies. It can be shown that
the formula (22) is true for any n frequencies (for example, with rational ratios) provided
a random distribution of phase is assumed.

(iii) In the approximate evaluation of the rate (94) at general or low pressures the
constants v, E, (compare (ii) above) play the same role as before; the factor

My ooy = 00y oot 07"
of §§ 5 to 7 is of course replaced by
a'ago ... a0 "2

by the theorem.

I am indebted to Professor M. G. Evans, who encouraged me to develop this theory,
and to Mr H. D. Ursell and Dr H. E. Daniels, who suggested the methods of appendices
1 and 2 respectively.
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APPENDIX 1. THE LOW-PRESSURE INTEGRAL

A saddle-point method is sketched for the integral (43) to (45); notes are added on
computation and on analytical details. It is assumed throughout that b = 42 is large and

n not too large; in examples 42 has been about 40 and 7 up to 13.
The method. In (44) let

(2) = InO(z) = —2hz—Inz+ 3 Ind(42). (A)
1
This function has a unique minimum on the real positive axis, at z,, say, and here the

derivatives y”, ¥V are small compared with ¢ (compare the details below). In the integral
(43) take ¢ = z, so that the path of integration is z = zy+y, y = (—00,00). With the Taylor

expansion " " iv
P U (20+w) = o=y Vo —§°V0 +35y V5 -
(the suffix 0 indicating the value at z = z,, where ¥’ = 0), the integral (43) becomes

@ © "
A=52|" exp(~dyi—) .

The terms beyond #° in the exponential may be neglected; the term in 3 yields a cosine
factor which may be replaced by unity to a fair approximation. This gives the formula

sought, namely A = @/ /(2myy). (B)
The computation. For a given molecule with known values of the g and 4, it is simple to

tabulate ¥(z) for real positive z, and to find the minimum point z,, and hence ¥, and y§ by
interpolation. To tabulate ¥ (z) it is observed that in (45)

$(u) = 1+ 2u{1 + H(p)}| H' (), (C)
where H(y) = 2n~* f * e=# dxis the error function and H’ (@) its derivative; these are tabulated
0

side-by-side in New York W.P.A. (1941).

Analytical details. (i) For positive x4, ¢(u) (45) is monotonic. It has the expansion for
small u

$(u) = 1+ Jmu+24 ..., (D)
and asymptotically for large # (the source of the approximation (46))
. 1 3
Pu) ~2 mpe” top gt (£)
Also ¢ () = {(1+24%) §—1}/p. (F)
(ii) The minimum of Y(z) (z is real and positive in this subsection). From (A) and (F),
V(2) =f2) /2 flz)=22"—2hz+n—1—M(2), (G)
where M) = 3 1puz) (Sw=1). (H)

As by (3) and (39) the g lie strictly between 0 and 1, it can be inferred that, for large 4,
Jf(2) has a unique zero at z = z, near 4. If physically unreal distributions of the 4, such as
ML, fly, ..., 4, =0, are excluded, then M(z) is small near z = & compared with the first
three terms of f(z) in (G). Hence the root z, is nearly

2= HhH (R =2+ 2)} = h(l—c—e?...), 6= (n—1)/24% )
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For the derivatives of ¥(z) at z,,
Yo =0,
Vo = zg(4zy—2h— M) ~ 2(1 —e—2¢?), l
YU xde(1436) [h, Y~ —126(144¢) /12, |
(neglecting the small derivatives M, Mg, ..., which can be expressed in terms of the ¢(,z,)

by (F)). This confirms the relative magnitudes to be as stated after equation (A). The
rough approximation ¥ = 2 suggested by (K) shows that the order of magnitude of the

result (B) is Ax®y/2 /m. (L)
(iii) The case of similar y;. If the y; are similar in size, all the ¢(4z,) in (B) may be repre-
sented approximately by the first term of (E). Then, since 24? = 1,

Dy = exp (2§ —2hzy) py ... p 251 (2./m)".
Using (J) and (K) the result (B) becomes, as far as the terms of order €2,

(K)

4h?

which agrees with the approximation (47) found in § 5 for similar g,

A=y ... p,(4wh?)ie-De-r {1 — w:?_)} > (M)

APPENDIX 2. THE GENERAL RATE

The approximate formula (57) and (58) for the general rate is obtained here, and a note
is added on the integral (58) as it appears in the work of Marcus.
The special notations will be used:

M—1) =m, D(s+1) =, (N)
where 7 is the number of normal modes; s is any variable. Also, integral signs preceded
directly by 1/¢ imply paths from ¢—tc0 to ¢+t00, with ¢>0. The transform formulae to

be used are L 1 (L7w'—2dz

1+L/w=2_J sin mz (0<R(z) <), (0)

s _osloret
vU) = 4 [ - (P)

The rate integral (18) to be evaluated over the range (4) may be written
wLCXp(—gx?) . .
1
= —F X 2x;dx;

K[| i U(Smsn) T1 2n), Q)

by the use of (38) to (40) and the variables x; of (41). The approximation (6) to L is, with
the present variables and notation,
U (Zpn,—h\™ (202 x\}
L:E!( ﬂ277 ) (&Mﬂz) R)
Formula (O) is inserted in (Q ), the order of integration is reversed, and then (R) is inserted
for L, with the powers of (Xux,—%) and (Zgv?x,) replaced by the appropriate transforms
of the type (P). The result is

B on rpl-z4z 1 | L dq _:l__f e ht n .
K= 2.) sinnz (32)! (mz)!dz Qm.[‘q%zﬂ om pmz+l];-[¢{ﬂi(p+vi )} dp, (S)
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where A~! = (2m)™m! /(4 ... 4,), and (in contrast with the simpler integral (45) of the

same type) "
$) = [ exp (e —s?) b2l (T)

For large £ and only a moderate spread of the x, ¢(u) will be required for large R(p), so
that approximately (compare (46))

B(u) = Jm (hp)' 2 e, (U)
This is used in equation (S), with the relations Zg? = 1, Xu?v? = v2. The resulting factor
IT(p+v?¢) in equation (S) is represented by (p+v2¢)”, and the exponent p2+ 2v?pq + Zp? v} ¢?
by (p-+v2%¢)?; this is an approximation requiring the »; alone to be of similar magnitude.
After these reductions of II¢{ }, the part of equation (S) after ‘dz’ can be written

e*hadg 1 [ et
(e te e [ e (p-+v2g) -9 4, V)
where u=p+v2qg—2h. (W)

In the last integral, the variable p is replacéd by u (shifting the path of integration), and the
powers of p and p-+v2q are represented by powers of 24; this gives the leading term in an
expansion which could be carried further. The integrals for ¢ (using (P)) and « are then

v2h 2h\tz
lfe ‘Id:(v/z) lf*uzdu

om) ¢=1Y T (1)1 2m

The integral (equation (S)) is now, with the notation of (60) and (61),

-b 1-z | -b pw mz l-z d
kore’l 0 (mz) dz_ve J e‘tdtljt 0 z
m! 2 sin mz m! Jo 2t) sinmz
ve b e metdi
or, by (0), | K=" LHM_I.

This is the result (57) and (58), if the special notations (IN) are now removed.

Note on I(0) in Marcus’s theory

An integral of the form (58) occurs in a unimolecular rate formula of Marcus (1952 a),

namelYa 1 on e~* x%r dx
0

P44 )o Traw
the parameter ¢ being inversely proportional to the pressure. In the notation (58) this
integral is I, (1/a), so that it has the same pressure dependence as (58) since the parameter
6 of the present theory varies as the pressure. The formal resemblance is close, but the inter-
pretation is quite different; Marcus’s r represents the number of ‘non-adiabatic rotations
of the activated complex’ and is not related to vibrational degrees of freedom.

In a companion paper Marcus (1952 5) evaluates the equivalent of I;(#) by sine and cosine
integrals, and approximates to I;(¢) by a method akin to the present appendix 1. His
method could be extended to higher values of 7, but it does not lend itself to the computation
of I,(0) for regular increments of log,, . The numerical quadrature used for n>>5 in table 3
appears to be as simple for this purpose.
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